Chemistry at the edge: actinide interactions with (poly)aminopolycarboxylates

Jenifer C. Braley

Colorado School of Mines

Research using (poly)aminopolycarboxylate (APC) ligands to achieve trivalent actinide / lanthanide separation has expanded significantly due to the development of derivative TALSPEAK solvent extraction processes that either simplify organic phase speciation (i.e. TALSQueak)\(^1\) or streamline processing steps through combining neutral and organic phase extractants (i.e. TRUSPEAK or ALSEP)\(^2,3\). Courtesy their applications in over fifty years of actinide separation science, the best defined interactions of actinides with soft donors in aqueous solutions involve APC ligands. These interactions are usually defined in terms of stability constants, especially for the trans-americanium actinides, with minimal dialogue regarding enthalpic and entropic contributions to the binding. While crystallographic, x-ray spectroscopic and computational techniques have provided support for covalency in actinide-ligand interactions\(^4\); examination of covalency trends for the trans-amerucium actinides can become rapidly limited due to material availability, radiological hazards and experimental data to validate computational models. Consideration of APC thermodynamic data with heavier actinides could be instructive regarding fundamental f-element science. The benefit of producing lanthanide-normalized linear free energy diagrams, modeling previous actinide separations and review of actinide/N-donor complexation thermodynamics is considered. A first peek at data collected in the new on-campus radiochemistry facilities with trans-amerucium actinides is also provided.


